343 research outputs found

    Cardioprotective effect of a meat with omega-3 and rosemary antioxidant in low cardiovascular risk people

    Get PDF
    Resumen del trabajo presentado a la "11th European Nutrition Conference (FENS)" celebrada en Madrid del 26 al 29 de octubre de 2011.-- et al.Peer Reviewe

    Analysis of predictive thermodynamic models for estimation of polycyclic aromatic solid solubility in hot pressurized water

    Get PDF
    This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License.The ability of two thermodynamic approaches to predict the solubility of solid compounds in hot pressurized water is studied and compared. The Regular Solution Theory, based on the solubility parameter concept, and UNIFACbased models were applied to calculate the solute activity coefficient and then, solubility predictions were compared with experimental data reported in the literature. The analysis was carried out considering polycyclic aromatic hydrocarbons as model substances, i.e. substances which contain only the aromatic AC and ACH groups, and for which reliable pure physical properties such as melting point, fusion enthalpy and molar volume are available in the literature. The solubility values predicted with the UNIFAC-based models were considerably better than those obtained with the solubility parameter approach. Particularly, the modified Dortmund UNIFAC model presented an appropriate functionality of solubility with temperature, and the extension of this model to other type of aromatic compounds also provided a satisfactory prediction of solubility data.This work has been financed by project S2009-AGR- 1469 from the Comunidad Autónoma de Madrid (Spain) and CSD2007-00063 FUN-CFOOD (Programa CONSOLIDERINGENIO 2010) project.Peer Reviewe

    Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients

    Get PDF
    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 hThis work was supported by the Comunidad Autónoma de Madrid: ALIBIRD, project number S2013/ABI-272

    Analysis of predictive thermodynamic models for estimation of polycyclic aromatic solid solubility in hot pressurized water

    Full text link
    The ability of two thermodynamic approaches to predict the solubility of solid compounds in hot pressurized water is studied and compared. The Regular Solution Theory, based on the solubility parameter concept, and UNIFACbased models were applied to calculate the solute activity coefficient and then, solubility predictions were compared with experimental data reported in the literature. The analysis was carried out considering polycyclic aromatic hydrocarbons as model substances, i.e. substances which contain only the aromatic AC and ACH groups, and for which reliable pure physical properties such as melting point, fusion enthalpy and molar volume are available in the literature. The solubility values predicted with the UNIFAC-based models were considerably better than those obtained with the solubility parameter approach. Particularly, the modified Dortmund UNIFAC model presented an appropriate functionality of solubility with temperature, and the extension of this model to other type of aromatic compounds also provided a satisfactory prediction of solubility data.This work has been financed by project S2009-AGR-1469 from the Comunidad Autónoma de Madrid (Spain) and CSD2007-00063 FUN-CFOOD (Programa CONSOLIDERINGENIO 2010) project

    Supercritical Phase Equilibria Modeling of Glyceride Mixtures and Carbon Dioxide Using the Group Contribution EoS

    Full text link
    The Group Contribution Equation of State (GC-EoS) was extended to represent high-pressure phase equilibria behavior of mixtures containing mono-, di-, triglycerides, and carbon dioxide (CO2). For this purpose, the alcohol-ester and the alcoholtriglyceride binary group interaction parameters were regressed in this work, using experimental phase equilibria data from the literature. The capability of the parameters obtained was assessed by applying the GC-EoS model to simulate the supercritical CO2 fractionation of a complex glyceride mixture, which was produced by the ethanolysis of sunflower oil. Experimental data was obtained in a countercurrent packed extraction column at pressures ranging from 16 to 25MPa and temperatures from 313 to 368 K. The GC-EoS model was applied in a completely predictive manner to simulate the phase equilibria behavior of the multistage separation process. The chemical analysis of the glyceride mixture allowed a significant simplification of its complex composition and thus, a simple and satisfactory simulation of the supercritical extraction process was achievedThis work has been financed by project ALIBIRD (S2009-AGR-1469) from the Comunidad Autónoma de Madrid and project FUN-C-FOOD (CSD2007-00063, CONSOLIDER-INGENIO 2010)

    Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves

    Full text link
    NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Supercritical Fluids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Supercritical Fluids, 55 (2011). http://dx.doi.org/10.1016/j.supflu.2010.09.030Rosmarinus officinalis (rosemary) extracts were obtained in a supercritical pilot-scale plant. Based on experimental information available in the literature for analytical or low-scale processes, extraction temperature and pressure were selected to be 313 K and 30 MPa. At these extraction conditions, the kinetic behavior of the pilot-scale overall extraction curve were determined with respect to yield, antioxidant activity and carnosic acid content. The overall extraction curve was represented using Sovova’s model; the average deviation between measured and calculated yields was lower than 2%. Mass transfer coefficients in the fluid and solid phases were determined and were compared with previous data reported in the literature for low-scale rosemary supercritical extraction. A two-stage depressurization procedure was accomplished and the effect of both on-line fractionation and extraction time on the antioxidant activity of the samples collected was studied. The antioxidant activity of the different fractions could be straight correlated with the carnosic acid content with a regression coefficient of 0.92This work has been financed by Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (ALIBIRD-S2009/AGR-1469) and project FUN-C-FOOD, CSD2007-00063 (CONSOLIDER-INGENIO) from Ministerio de Ciencia e Innovación, Spain
    corecore